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ABSTRACT
The accident at the Chernobyl nuclear power plant on 26 April 1986 
contaminated tracts of Europe with radionuclides. In Ukraine, 
two million hectares with radiation levels greater than 5.55 × 1011 

Bq/km2 were removed from agriculture and 137Cs, with a half-life of 
30 years, is still with us. Phytoremediation by vegetation that accu
mulates toxic elements has been widely applied. White sweet clo
ver (Melilotus albus) accumulates caesium and heavy metals in its 
biomass but, at the same time, produces nectar and pollen of 
a safely low level of 137Cs; so this culture is safe for beekeeping in 
the Chernobyl contamination zone. Growing M. albus over two 
years (2021–2) on a sandy sod podzolic soil within the Zhytomyr 
region increased the soil’s easily-hydrolysable N by 29.9%, 
decreased mobile phosphorus by 18.2%, and mobile forms of Cd 
by 38.5%, Hg by 25%, Pb by 24.5%, Cu by 18.5%, Zn by 14.9%, 137Cs 
by 8%.
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Introduction

The threat of pollution in Ukraine and around the world is unabated – and this includes 
accidental and deliberate damage to nuclear facilities [1]. In 1986, about 3.5 million 
hectares of agricultural land was radioactively contaminated by the catastrophe at the 
Chernobyl nuclear power plant in Ukraine. Two million hectares of arable emitting 
radiation of more than 5.55 × 1011Bq/km2 were removed from production [2,3] but there 
were no funds for decontamination. Radioactive caesium (137Cs), with a half-life of 30  
years, is still present. It moves actively in the soil-plant-consumers system [4,5] and 
causes thyroid cancer, leukaemia and other disorders [6–8]. There is also more general 
concern about soil contamination by arsenic, selenium, cadmium, mercury, and 
lead [9,10].

Phytoremediation – growing plants that accumulate toxins in their biomass – is being 
applied to hasten the return of contaminated land to agriculture [11,12]. 
Phytoremediation is safe and cost-effective compared to conventional physical and 
chemical procedures for mitigating soil and water pollution [13,14]. Amongst most- 
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promising species, honey clovers (legumes, also known as sweet clovers) accumulate 
137Cs but concentrate little of the pollutant in their nectar and pollen, so they can be 
employed for apiculture [15,16]. White sweet clover (Melilotus albus Medik) is unde
manding in terms of climate and grows on droughty and, even, moderately saline soils. 
The green mass serves as stockfeed; the nectar and pollen are attractive to bees [17]; 
moreover, it is good green manure, drawing nutrients from the deep subsoil and 
accumulating nitrogen through its symbiotic nitrogen-fixing bacteria [18,19]. Here, we 
focus on the changes in the agro-ecological parameters of a radioactively contaminated 
sod-podzolic sandy soil in the course of phytoremediation using white sweet clover.

Materials and methods

Field study was undertaken on a sandy sod-podzolic soil (Albic Retisol, arenic, Aric in the 
World Reference Base [20]) during 2021–2022 within the Narodichi territorial commu
nity of the Zhytomyr region, Northern Polissia, Ukraine (51°12′10″ N, 29°04′ 53″ E). The 
site had been fallow as a result of pollution. For the cultivation of M. albus, we established 
a control, continuing fallow, and an experimental variant under sweet clover, each with 
four replicates; each plot 25 m2.

At the outset, soil samples were selected from every plot by the envelope method (four 
samples from the corners of a square with sides of 100 m and one from the centre). To 
ascertain the agroecological consequences of phytoremediation, soil sampling was car
ried out simultaneously in the autumn from the control and experimental variant after 
collection and removal of the vegetative mass of the experimental plots. Tillage included 
disking the fallows and the experimental variant, ploughing to 20–22 cm in the autumn 
and, in spring, pre-sowing cultivation. The Grozynsky variety of M. albus, naturalised in 
Polissia, was sown in early spring at a rate of 14 kg/ha to a depth of 2–3 cm with a row 
spacing of 45 cm.

Measurements of humus were made by dichromate oxidation [21], reaction (pHKCl) 
potentiometrically [22], easily-hydrolysed nitrogen following Cornfield [23], available 
phosphorus following Bray and Kurtz [24], available potassium by ammonium acetate 
extraction and flame photometry. Mobile Cu, Zn, Pb, Cd and Hg were determined by 
atomic absorption spectrometry [25] and 137Cs in plants and soil was determined by 
IAEA methods [26]. To assess the degree of danger of heavy metals, the hazard ratio was 
determined according to the formula: Hr = C/MPCi, where C is the heavy metal con
centration in the soil (mg/kg) and MPCi is the maximum permissible concentration of 
heavy metals in soil (mg/kg). Statistical analysis of the reliability of the results was 
performed using Statistics Kingdom online.

Results and discussion

At the outset, the plough layer contained 1.32 ± 0.7% humus, 117.0 ± 1.5 mg/kg easily- 
hydrolysed nitrogen, 197.2 ± 1.2 mg/kg available phosphorus and 292.4 ± 2.7 mg/kg of 
available potassium. Two years’ cultivation of M. albus with annual removal of above- 
ground biomass had a measurable effect on agrochemical indicators (Table 1): there was 
a significant increase in the content of easily-hydrolysable N, a decrease in the content of 
available phosphorus and potassium, but no significant change in pH or humus content.
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Soil enrichment with available N by fixation of atmospheric N is a clear benefit. Over 
two years under M. albus, easily-hydrolysable N increased by 29.9%, together with some 
neutralisation of acidity and decrease of available phosphorus and potassium by 13.9% 
and 18.2%, respectively. Cultivation of M. albus also brought about significant changes in 
the content of mobile heavy metals in the soil (Table 2). Over the two years of cultivation 
of M. albus, the amount of Cu, Zn, Pb, Cd, and Hg decreased by 18.7%, 14.9%, 24.5%, 
38.5% and 25%, respectively.

Even one year’s cultivation of M. albus extracted 22.2% of the mobile cadmium and 
21.4% of the lead from the soil (Figure 1). Over two years, the above-ground biomass 

Table 1. Changes in agrochemical parameters of the soil during the cultivation of M. albus.

Agrochemical 
indicator

Control (fallow) Culture M. albus

First year Second year First year Second year

Humus, % 1.32 ± 0.7 1.32 ± 0.2 1.38 ± 0.4 1.40 ± 0.6
Reaction (pHKCl) 6.44 ± 0.4 6.42 ± 0.7 6.46 ± 0.2 6.5 ± 0.2
N (easily-hydrolysable), mg/kg 117.0 ± 1.5 117.8 ± 0.4 136.0 ± 4.1 152.0 ± 6.2xxx

P (available), mg/kg 197.2 ± 1.2 198.1 ± 1.6 178.6 ± 1.2 161.3 ± 3.1xxx

K (available), mg/kg 292.4 ± 2.7 293.7 ± 1.4 267.4 ± 3.7 251.6 ± 4.7xxx

xxxР < 0.001.

Table 2. Changes in the mobile heavy metals in the soil during the cultivation of M. albus.

Heavy metal

Content of heavy metals, mg/kg

Control Culture M. albus

First year Second year First year Second year

Cu 0.32 ± 0.07 0.33 ± 0.09 0.27 ± 0.07 0.26 ± 0.014xxx

Zn 1.07 ± 0.20 1.09 ± 0.02 0.96 ± 0.03 0.91 ± 0.037xx

Pb 3.74 ± 0.60 3.78 ± 0.01 2.94 ± 0.2 2.82 ± 0.031xx

Cd 0.18 ± 0.03 0.18 ± 0.02 0.14 ± 0.02 0.11 ± 0.07xx

Hg 0.0068 ± 0.0005 0.0068 ± 0.0004 0.0060 ± 0.0003 0.0051 ± 0.0002xxx

ххР < 0.01; хххР < 0.001.

Figure 1. Removal of mobile forms of heavy metals during two years of cultivation of M. albus, % of 
the initial content in the soil.
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assimilated 38.9% and 25.4% of these elements, respectively, and there was also signifi
cant removal of Hg, Cu and Zn.

The hazard ratio of toxicants (Table 3) indicates the level of soil contamination and its 
suitability for agricultural use.

In all cases, the ratio was less than the critical value of unity and, after the first year of 
cultivation of M. albus, the hazard ratio of heavy metals in the soil decreased by 15.0% for 
Cu, 10.8% for Zn, 21.3% for Pb, 22.1% for Cd and 6.6% for Hg. After the second year of 
phytomelioration, the soil hazard ratio of Cu, Zn, Pb, and Hg decreased by a further 4.4, 
4.8, 4.0, 21.5 and 14.2%, respectively. So, over two years of remediation under M. albus, 
the hazard ratio of Cu, Zn, Pb, Cd and Hg in the soil decreased by 18.8, 15.2, 24.5, 38.9 
and 20%, respectively.

Figure 2 depicts the changes in the 137Cs radioactivity in the soil. Thus, in the test soil 
before growing M. albus, the radiometric reading was 246.5 Bq/kg. After growing this 
crop for two years and removing the above-ground biomass, the radioactivity of the soil 
decreased by 8%.

We find that phytoremediation of sandy soil by growing M. albus has a complex effect 
on its ecological condition; notably, an increase in the content of easily-hydrolysable 
N and a decrease in the concentration of toxins, including radioactive caesium. This is 

Table 3. Change in the hazard ratio of heavy metals in the soil during the cultivation of M. albus.

Heavy metal MPC

The hazard ratio of heavy metals in the soil

First year Second year First year Second year

Cu 3.0 0.106 ± 0.004 0.11 ± 0.004 0.09 ± 0.0004xxx 0.086 ± 0.002xxx

Zn 23.0 0.046 ± 0.002 0.047 ± 0.0005 0.041 ± 0.0002x 0.039 ± 0.0006xxx

Pb 6.0 0.623 ± 0.002 0.530 ± 0.0001 0.490 ± 0.0008xxx 0.470 ± 0.007xxx

Cd 0.7 0.257 ± 0.004 0.257 ± 0.0009 0.20 ± 0.003 0.157 ± 0.003xxx

Hg 2.1 0.003 ± 0.00003 0.003 ± 0.00004 0.002 ± 0.0007 0.0024 ± 0.0006xx

ххР < 0.01; хххР < 0.001.

Figure 2. Changes of 137Cs radiation in the soil during the two-year cultivation of M. albus, Bq/kg.
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highly desirable to increase the ecological safety of soils and return them to agricultural 
use in the contamination zone of the Chernobyl nuclear power plant.

Moreover, there is consensus that phytoremediation can be effective for the 
removal of a variety of soil contaminants, including petroleum hydrocarbons, 
munitions waste (e.g., TNT), metals and metalloids, salt, and radioisotopes [27]: 
Brown et al. [28] recommend metal-tolerant hyperaccumulator plants for phytor
emediation of contaminated soils; Hamzah et al. [29] report a 71% decrease in the 
concentration of Cd by vetiver (Chrysopogon zizanioides L. Roberty), 59% by 
Indian goosegrass (Eleusine indica L.), 52% by tropical whiteweed (Ageratum 
conyzoides L.) and hairy spurge (Euphorbia hirta L.), and 22% by Siam weed 
(Chromolaena odorata L.); tropical black nightshade (Solanum nigrum L.) has also 
been widely studied for the remediation of soils contaminated by heavy 
metals [30].

Kocira et al. [31] focus on Fabaceae for their versatile benefits: reducing soil compac
tion and erosion, improving soil structure, increasing soil organic matter and the activity 
of microorganisms and, especially, increasing the nitrogen content by symbiotic fixation 
of atmospheric nitrogen. Ali et al. [32] reported phytoremediation of Cd, Pb, Cu and Zn 
contamination using annual berseem clover (Trifolium alexandrinum L.); the values of 
the bioconcentration coefficient of the roots for Zn, Pb, Cu and Cd were 4.24, 1.54, 1.07 
and 0.60, respectively [32]. Tlustoš et al. [33] investigated As, Cd, Pb and Zn uptake and 
potential phytoremediation efficiency of five plants commonly used as forage and energy 
crops: Melilotus alba, red clover (Trifolium pratense L.), Chinese mallow (Malva verti
cillata L.), safflower (Carthamus tinctorius L.) and hemp (Cannabis sativa L.); the total 
absorption of elements decreased in the order C. tinctorius > M. verticillata > C. sativa 
and M. alba [33].

Our own field study underscores the phytoremediation potential of the Fabaceae, in 
particular M. albus, in polluted landscapes. It enriched the topsoil of sandy Albic Retisol 
by 18.2 mg/kg of easily hydrolysable N in the first year of cultivation, and by another 16  
mg/kg in the second – but the main benefit is that, by removing the above-ground 
biomass, the soil contaminated by the Chernobyl accident was gradually but noticeably 
cleaned of 137Cs, Pb, Cd, Zn, Cu and Hg.

Conclusions

● Phytoremediation of radioactively contaminated agricultural land with the help of 
a two-year culture of white sweet clover Melilotus albus and the removal of above- 
ground biomass increased the content of easily hydrolysed nitrogen by 29.9% but 
decreased mobile phosphorus by 18.2% and exchangeable potassium by 13.9%.

● The two-year cultivation of M. albus also reduced the content of radiocaesium by 
8% and the concentration of heavy metals: Cd by 38.5%, Hg by 25%, Pb by 24.5%, 
Cu by 18.7%, and Zn by 14.9%, significantly reducing the hazard ratio of these 
toxins.
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